Blow-up of Solutions to a p-Laplace Equation

نویسندگان

  • Yuliya Gorb
  • Alexei Novikov
چکیده

Consider two perfectly conducting spheres in a homogeneous medium where the current-electric field relation is the power law. Electric field E blows up in the L∞-norm as δ, the distance between the conductors, tends to zero. We give here a concise rigorous justification of the rate of this blow-up in terms of δ. If the current-electric field relation is linear, see similar results obtained earlier in [E. S. Bao, Y. Y. Li, and B. Yin, Arch. Ration. Mech. Anal., 193 (2009), pp. 195–226; H. Kang, M. Lim, and K. H. Yun, preprint, http://arxiv.org/abs/1105.4328v1, 2011; M. Lim and K. Yun, Comm. Partial Differential Equations, 34 (2009), pp. 1287–1315; K. Yun, SIAM J. Appl. Math., 67 (2007), pp. 714–730; K. Yun, J. Math. Anal. Appl., 350 (2009), pp. 306–312].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Blow-up for the 1d Nonlinear Schrödinger Equation with Point Nonlinearity Ii: Supercritical Blow-up Profiles

We consider the 1D nonlinear Schrödinger equation (NLS) with focusing point nonlinearity, (0.1) i∂tψ + ∂ 2 xψ + δ|ψ|p−1ψ = 0, where δ = δ(x) is the delta function supported at the origin. In the L supercritical setting p > 3, we construct self-similar blow-up solutions belonging to the energy space Lx ∩Ḣ x. This is reduced to finding outgoing solutions of a certain stationary profile equation. ...

متن کامل

Blow-up Solutions for Linear Perturbations of the Yamabe Equation

For a smooth, compact Riemannian manifold (M, g) of dimension N ≥ 3, we are interested in the critical equation ∆gu+ ( N − 2 4(N − 1) Sg +εh ) u = u N+2 N−2 in M , u > 0 in M , where ∆g is the Laplace–Beltrami operator, Sg is the Scalar curvature of (M, g), h ∈ C (M), and ε is a small parameter.

متن کامل

BLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM

In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...

متن کامل

Regional, Single Point, and Global Blow-up for the Fourth-order Porous Medium Type Equation with Source

Blow-up behaviour for the fourth-order quasilinear porous medium equation with source, (0.1) ut = −(|u|u)xxxx + |u|u in R × R+, n > 0, p > 1, is studied. Countable and finite families of similarity blow-up patterns of the form uS(x, t) = (T − t)− 1 p−1 f(y), where y = x/(T − t) , β = p−(n+1) 4(p−1) , which blow-up as t → T− < ∞, are described. These solutions explain key features of regional (f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2012